linux有哪些进程通信(linux进程间信号量通信)

纸扎戏偶

今天给各位分享linux有哪些进程通信的知识,其中也会对linux进程间信号量通信进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

  • 1、Linux - 进程间通信与线程通信方式
  • 2、Linux进程间通信
  • 3、linux系统的进程间通信有哪几种方式
  • 4、Linux进程间通信的方式有哪些
  • 5、Linux进程间通信?
  • 6、Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)

1、Linux - 进程间通信与线程通信方式

每个进程的用户地址空间都是独立的,一般而言是不能互相访问的,但内核空间是每个进程都共享的,所以进程之间要通信必须通过内核。

上面命令行里的「|」竖线就是一个管道,它的功能是将前一个命令(ps auxf)的输出,作为后一个命令(grep mysql)的输入,从这功能描述,可以看出管道传输数据是单向的,如果想相互通信,我们需要创建两个管道才行。

同时,我们得知上面这种管道是没有名字,所以「|」表示的管道称为匿名管道,用完了就销毁。

管道还有另外一个类型是命名管道,也被叫做 FIFO,因为数据是先进先出的传输方式。

在使用命名管道前,先需要通过 mkfifo 命令来创建,并且指定管道名字

myPipe 就是这个管道的名称,基于 Linux 一切皆文件的理念,所以管道也是以文件的方式存在,我们可以用 ls 看一下,这个文件的类型是 p,也就是 pipe(管道) 的意思:

你操作了后,你会发现命令执行后就停在这了,这是因为管道里的内容没有被读取,只有当管道里的数据被读完后,命令才可以正常退出。

于是,我们执行另外一个命令来读取这个管道里的数据:

可以看到,管道里的内容被读取出来了,并打印在了终端上,另外一方面,echo 那个命令也正常退出了。

我们可以看出,管道这种通信方式效率低,不适合进程间频繁地交换数据。当然,它的好处,自然就是简单,同时也我们很容易得知管道里的数据已经被另一个进程读取了。

前面说到管道的通信方式是效率低的,因此管道不适合进程间频繁地交换数据。

对于这个问题,消息队列的通信模式就可以解决。比如,A 进程要给 B 进程发送消息,A 进程把数据放在对应的消息队列后就可以正常返回了,B 进程需要的时候再去读取数据就可以了。同理,B 进程要给 A 进程发送消息也是如此。

再来,消息队列是保存在内核中的消息链表,在发送数据时,会分成一个一个独立的数据单元,也就是消息体(数据块),消息体是用户自定义的数据类型,消息的发送方和接收方要约定好消息体的数据类型,所以每个消息体都是固定大小的存储块,不像管道是无格式的字节流数据。如果进程从消息队列中读取了消息体,内核就会把这个消息体删除。

消息队列生命周期随内核,如果没有释放消息队列或者没有关闭操作系统,消息队列会一直存在,而前面提到的匿名管道的生命周期,是随进程的创建而建立,随进程的结束而销毁。

消息这种模型,两个进程之间的通信就像平时发邮件一样,你来一封,我回一封,可以频繁沟通了。

但邮件的通信方式存在不足的地方有两点,一是通信不及时,二是附件也有大小限制,这同样也是消息队列通信不足的点。

消息队列不适合比较大数据的传输,因为在内核中每个消息体都有一个最大长度的限制,同时所有队列所包含的全部消息体的总长度也是有上限。在 Linux 内核中,会有两个宏定义 MSGMAX 和 MSGMNB,它们以字节为单位,分别定义了一条消息的最大长度和一个队列的最大长度。

消息队列通信过程中,存在用户态与内核态之间的数据拷贝开销,因为进程写入数据到内核中的消息队列时,会发生从用户态拷贝数据到内核态的过程,同理另一进程读取内核中的消息数据时,会发生从内核态拷贝数据到用户态的过程。

消息队列的读取和写入的过程,都会有发生用户态与内核态之间的消息拷贝过程。那共享内存的方式,就很好的解决了这一问题。

现代操作系统,对于内存管理,采用的是虚拟内存技术,也就是每个进程都有自己独立的虚拟内存空间,不同进程的虚拟内存映射到不同的物理内存中。所以,即使进程 A 和 进程 B 的虚拟地址是一样的,其实访问的是不同的物理内存地址,对于数据的增删查改互不影响。

用了共享内存通信方式,带来新的问题,那就是如果多个进程同时修改同一个共享内存,很有可能就冲突了。例如两个进程都同时写一个地址,那先写的那个进程会发现内容被别人覆盖了。

为了防止多进程竞争共享资源,而造成的数据错乱,所以需要保护机制,使得共享的资源,在任意时刻只能被一个进程访问。正好,信号量就实现了这一保护机制。

信号量其实是一个整型的计数器,主要用于实现进程间的互斥与同步,而不是用于缓存进程间通信的数据。

信号量表示资源的数量,控制信号量的方式有两种原子操作:

P 操作是用在进入共享资源之前,V 操作是用在离开共享资源之后,这两个操作是必须成对出现的。

接下来,举个例子,如果要使得两个进程互斥访问共享内存,我们可以初始化信号量为 1。

具体的过程如下:

可以发现,信号初始化为 1,就代表着是互斥信号量,它可以保证共享内存在任何时刻只有一个进程在访问,这就很好的保护了共享内存。

另外,在多进程里,每个进程并不一定是顺序执行的,它们基本是以各自独立的、不可预知的速度向前推进,但有时候我们又希望多个进程能密切合作,以实现一个共同的任务。

例如,进程 A 是负责生产数据,而进程 B 是负责读取数据,这两个进程是相互合作、相互依赖的,进程 A 必须先生产了数据,进程 B 才能读取到数据,所以执行是有前后顺序的。

那么这时候,就可以用信号量来实现多进程同步的方式,我们可以初始化信号量为 0。

具体过程:

可以发现,信号初始化为 0,就代表着是同步信号量,它可以保证进程 A 应在进程 B 之前执行。

跨机器进程间通信方式

同个进程下的线程之间都是共享进程的资源,只要是共享变量都可以做到线程间通信,比如全局变量,所以对于线程间关注的不是通信方式,而是关注多线程竞争共享资源的问题,信号量也同样可以在线程间实现互斥与同步:

2、Linux进程间通信

linux下进程间通信的几种主要手段简介:

一般文件的I/O函数都可以用于管道,如close、read、write等等。

实例1:用于shell

管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。

实例二:用于具有亲缘关系的进程间通信

管道的主要局限性正体现在它的特点上:

有名管道的创建

小结:

管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。

FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。

管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。

要灵活应用管道及FIFO,理解它们的读写规则是关键。

信号生命周期

信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。

可以从两个不同的分类角度对信号进行分类:(1)可靠性方面:可靠信号与不可靠信号;(2)与时间的关系上:实时信号与非实时信号。

(1) 可靠信号与不可靠信号

不可靠信号 :Linux下的不可靠信号问题主要指的是信号可能丢失。

可靠信号 :信号值位于SIGRTMIN和SIGRTMAX之间的信号都是可靠信号,可靠信号克服了信号可能丢失的问题。Linux在支持新版本的信号安装函数sigation()以及信号发送函数sigqueue()的同时,仍然支持早期的signal()信号安装函数,支持信号发送函数kill()。

对于目前linux的两个信号安装函数:signal()及sigaction()来说,它们都不能把SIGRTMIN以前的信号变成可靠信号(都不支持排队,仍有可能丢失,仍然是不可靠信号),而且对SIGRTMIN以后的信号都支持排队。这两个函数的最大区别在于,经过sigaction安装的信号都能传递信息给信号处理函数(对所有信号这一点都成立),而经过signal安装的信号却不能向信号处理函数传递信息。对于信号发送函数来说也是一样的。

(2) 实时信号与非实时信号

前32种信号已经有了预定义值,每个信号有了确定的用途及含义,并且每种信号都有各自的缺省动作。如按键盘的CTRL ^C时,会产生SIGINT信号,对该信号的默认反应就是进程终止。后32个信号表示实时信号,等同于前面阐述的可靠信号。这保证了发送的多个实时信号都被接收。实时信号是POSIX标准的一部分,可用于应用进程。非实时信号都不支持排队,都是不可靠信号;实时信号都支持排队,都是可靠信号。

发送信号的主要函数有:kill()、raise()、 sigqueue()、alarm()、setitimer()以及abort()。

调用成功返回 0;否则,返回 -1。

sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然也支持前32种),支持信号带有参数,与函数sigaction()配合使用。

sigqueue的第一个参数是指定接收信号的进程ID,第二个参数确定即将发送的信号,第三个参数是一个联合数据结构union sigval,指定了信号传递的参数,即通常所说的4字节值。

sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。sigqueue()比kill()传递了更多的附加信息,但sigqueue()只能向一个进程发送信号。

inux主要有两个函数实现信号的安装: signal() 、 sigaction() 。其中signal()在可靠信号系统调用的基础上实现, 是库函数。它只有两个参数,不支持信号传递信息,主要是用于前32种非实时信号的安装;而sigaction()是较新的函数(由两个系统调用实现:sys_signal以及sys_rt_sigaction),有三个参数,支持信号传递信息,主要用来与 sigqueue() 系统调用配合使用,当然,sigaction()同样支持非实时信号的安装。sigaction()优于signal()主要体现在支持信号带有参数。

消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的

消息队列的内核持续性要求每个消息队列都在系统范围内对应唯一的键值,所以,要获得一个消息队列的描述字,只需提供该消息队列的键值即可;

消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。

信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程也可以修改该标志。除了用于访问控制外,还可用于进程同步。信号灯有以下两种类型:

int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信号灯集ID,sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。

int semctl(int semid,int semnum,int cmd,union semun arg)

该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;arg用于设置或返回信号灯信息。

进程间需要共享的数据被放在一个叫做IPC共享内存区域的地方,所有需要访问该共享区域的进程都要把该共享区域映射到本进程的地址空间中去。系统V共享内存通过shmget获得或创建一个IPC共享内存区域,并返回相应的标识符。内核在保证shmget获得或创建一个共享内存区,初始化该共享内存区相应的shmid_kernel结构注同时,还将在特殊文件系统shm中,创建并打开一个同名文件,并在内存中建立起该文件的相应dentry及inode结构,新打开的文件不属于任何一个进程(任何进程都可以访问该共享内存区)。所有这一切都是系统调用shmget完成的。

shmget()用来获得共享内存区域的ID,如果不存在指定的共享区域就创建相应的区域。shmat()把共享内存区域映射到调用进程的地址空间中去,这样,进程就可以方便地对共享区域进行访问操作。shmdt()调用用来解除进程对共享内存区域的映射。shmctl实现对共享内存区域的控制操作。这里我们不对这些系统调用作具体的介绍,读者可参考相应的手册页面,后面的范例中将给出它们的调用方法。

注:shmget的内部实现包含了许多重要的系统V共享内存机制;shmat在把共享内存区域映射到进程空间时,并不真正改变进程的页表。当进程第一次访问内存映射区域访问时,会因为没有物理页表的分配而导致一个缺页异常,然后内核再根据相应的存储管理机制为共享内存映射区域分配相应的页表。

3、linux系统的进程间通信有哪几种方式

一、方式

1、管道(Pipe)及有名管道( mkpipe):

管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;

2、信号(Signal):

信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身。

linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction。

实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数。

3、消息队列(Message):

消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。

4、共享内存:

使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。

5、信号量(semaphore):

主要作为进程间以及同一进程不同线程之间的同步手段。

6、套接口(Socket):

更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

二、概念

进程间通信概念:

IPC—-InterProcess Communication

每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到所以进程之间要交换数据必须通过内核。

在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信。

扩展资料

1)无名管道:

管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程)。

管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,构成两进程间通信的一个媒介。

数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

2)有名管道:

不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之间)。

因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。

4、Linux进程间通信的方式有哪些

第一种:管道通信

两个进程利用管道进行通信时,发送信息的进程称为写进程;接收信息的进程称为读进程。管道通信方式的中间介质就是文件,通常称这种文件为管道文件,它就像管道一样将一个写进程和一个读进程连接在一起,实现两个进程之间的通信。写进程通过写入端往管道文件中写入信息;读进程通过读出端从管道文件中读取信息。两个进程协调不断地进行写和读,便会构成双方通过管道传递信息的流水线。

第二种:消息缓冲通信

多个独立的进程之间可以通过消息缓冲机制来相互通信。这种通信的实现是以消息缓冲区为中间介质,通信双方的发送和接收操作均以消息为单位。在存储器中,消息缓冲区被组织成队列,通常称之为消息队列。消息队列一旦创建后即可由多进程共享,发送消息的进程可以在任意时刻发送任意个消息到指定的消息队列上,并检查是否有接收进程在等待它所发送的消息。若有则唤醒它,而接收消息的进程可以在需要消息的时候到指定的消息队列上获取消息,如果消息还没有到来,则转入睡眠等待状态。

第三种:共享内存通信

针对消息缓冲需要占用CPU进行消息复制的缺点,OS提供了一种进程间直接进行数据交换的通信方式。共享内存,顾名思义这种通信方式允许多个进程在外部通信协议或同步,互斥机制的支持下使用同一个内存段进行通信,它是一种最有效的数据通信方式,其特点是没有中间环节,直接将共享的内存页面通过附接映射到相互通信的进程各自的虚拟地址空间中,从而使多个进程可以直接访问同一个物理内存页面。

5、Linux进程间通信?

进程间通信支持进程之间的通信,Linux支持进程间的多种通信机制,包含信号量、共享内存、消息

队列、管道、UNIX域套接字等,这些机制可协助多个进程、多资源的互斥访问、进程间的同步和消息传

递。在实际的Linux应用中,人们更多地趋向于使用UNIX域套接字,而不是System V IPC中的消息队列等

机制。Android内核则新增了Binder进程间通信方式。

Linux内核5个组成部分之间的依赖关系如下。

·进程调度与内存管理之间的关系:这两个子系统互相依赖。在多程序环境下,程序要运行,则必须

为之创建进程,而创建进程的第一件事情,就是将程序和数据装入内存。

·进程间通信与内存管理的关系:进程间通信子系统要依赖内存管理支持共享内存通信机制,这种机

制允许两个进程除了拥有自己的私有空间之外,还可以存取共同的内存区域。

·虚拟文件系统与网络接口之间的关系:虚拟文件系统利用网络接口支持网络文件系统(NFS),也

利用内存管理支持RAMDISK设备。

·内存管理与虚拟文件系统之间的关系:内存管理利用虚拟文件系统支持交换,交换进程定期由调度

程序调度,这也是内存管理依赖于进程调度的原因。当一个进程存取的内存映射被换出时,内存管理向虚

拟文件系统发出请求,同时,挂起当前正在运行的进程。

除了这些依赖关系外,内核中的所有子系统还要依赖于一些共同的资源。这些资源包括所有子系统都

用到的API,如分配和释放内存空间的函数、输出警告或错误消息的函数及系统提供的调试接口等。

6、Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)

为了能够有效的控制多个进程之间的沟通过程,保证沟通过程的有序和和谐,OS必须提供一定的同步机制保证进程之间不会自说自话而是有效的协同工作。比如在 共享内存的通信方式中,两个或者多个进程都要对共享的内存进行数据写入,那么怎么才能保证一个进程在写入的过程中不被其它的进程打断,保证数据的完整性 呢?又怎么保证读取进程在读取数据的过程中数据不会变动,保证读取出的数据是完整有效的呢?

常用的同步方式有: 互斥锁、条件变量、读写锁、记录锁(文件锁)和信号灯.

互斥锁:

顾名思义,锁是用来锁住某种东西的,锁住之后只有有钥匙的人才能对锁住的东西拥有控制权(把锁砸了,把东西偷走的小偷不在我们的讨论范围了)。所谓互斥, 从字面上理解就是互相排斥。因此互斥锁从字面上理解就是一点进程拥有了这个锁,它将排斥其它所有的进程访问被锁住的东西,其它的进程如果需要锁就只能等待,等待拥有锁的进程把锁打开后才能继续运行。 在实现中,锁并不是与某个具体的变量进行关联,它本身是一个独立的对象。进(线)程在有需要的时候获得此对象,用完不需要时就释放掉。

互斥锁的主要特点是互斥锁的释放必须由上锁的进(线)程释放,如果拥有锁的进(线)程不释放,那么其它的进(线)程永远也没有机会获得所需要的互斥锁。

互斥锁主要用于线程之间的同步。

条件变量:

上文中提到,对于互斥锁而言,如果拥有锁的进(线)程不释放锁,其它进(线)程永远没机会获得锁,也就永远没有机会继续执行后续的逻辑。在实际环境下,一 个线程A需要改变一个共享变量X的值,为了保证在修改的过程中X不会被其它的线程修改,线程A必须首先获得对X的锁。现在假如A已经获得锁了,由于业务逻 辑的需要,只有当X的值小于0时,线程A才能执行后续的逻辑,于是线程A必须把互斥锁释放掉,然后继续“忙等”。如下面的伪代码所示:

1.// get x lock

2.while(x

关于linux有哪些进程通信和linux进程间信号量通信的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

文章版权声明:除非注明,否则均为我爱教程术原创文章,转载或复制请以超链接形式并注明出处。