linux协议栈哪个文件(linux wifi协议栈)

纸扎戏偶

本篇文章给大家谈谈linux协议栈哪个文件,以及linux wifi协议栈对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

  • 1、linux socket在协议栈中是怎样的
  • 2、如何重新编译linux ipsec协议栈
  • 3、linux 网络路径中网络协议栈有几种
  • 4、linux程序包里的TCPIP协议栈哪里找
  • 5、Linux网络协议栈7--ipsec收发包流程

1、linux socket在协议栈中是怎样的

增加对Linux socket连接 最近的一个项目的最大连接数是模拟多个套接字的客户端和服务器之间的通信。 Linux系统由于Linux的限制,/在include / linux / posix_types.h文件中有如下的宏定义: #UNDEF __FD_SETSIZE 的#define __FD_SETSIZE 1024 这个宏是当你需要超过1024个FD,如select()函数将监听错误定义的最大文件描述符1024。所以,你需要改变1024所需要的数量,但不超过65,535。但这是不够的仅仅。 第二步你需要的文件的进程打开的最大数量。具体的步骤是: 1,CD /usr/src/linux-2.4/include/linux 2,六limits.h中编辑文件: 的#define NR_OPEN 90240原1024 1024 的#define OPEN_MAX 10240原值 3值,六fs.h文件 的#define INR_OPEN 10240原值1024 的#define NR_FILE 65536 8192原始值,内存64 / 1M比例计算的值,1G内存的计算公式为:64 * 10. 4 1024 的#define NR_RESERVED_FILES 128原值,CD /usr/src/linux-2.4/include/net BR五,六tcp.h中 的#define TCP_LHTABLE_SIZE的32 128原值易听听队列,建立大。 - 设为与内存相关的打开文件的最大数量,系统会减慢太多。 第三步是编译内核,具体步骤是: 1.使清洁 2.化妆 3. make dep的 4.做的bzImage 将导入的bzImage /启动重新启动系统! wc命令,以目前在建立套接字连接数统计| 与超过1024个客户端和服务器到服务器的终端使用netstat的连接。

2、如何重新编译linux ipsec协议栈

make config首先配置内核,生成内核配置文件,如果是服务器上的,建议使用编辑好的内核配置文件,自己在服务器上配置比较麻烦; make再根据生成的配置文件进行编译; 找到新的内核就可以使用

3、linux 网络路径中网络协议栈有几种

1.总述

Linux中用户空间的网络编程,是以socket为接口,一般创建一个sockfd = socket(family,type,protocol),之后以该sockfd为参数,进行各种系统调用来实现网络通信功能。其中family指明使用哪种协议域(如INET、UNIX等),protocol指明该协议域中具体哪种协议(如INET中的TCP、UDP等),type表明该接口的类型(如STREAM、DGRAM等),一般设protocol=0,那么就会用该family中该type类型的默认协议(如INET中的STREAM默认就是TCP协议)。

Linux中利用module机制,层次分明地实现了这套协议体系,并具有很好的扩展性,其基本模块构成如下:

先看右边,顶层的socket模块提供一个sock_register()函数,供各个协议域模块使用,在全局的net_family[]数组中增加一项;各个协议域模块也提供一个类似的register_xx_proto()函数,供各个具体的协议使用,在该协议域私有的xx_proto[]数组中增加一项。这两个数组中的存放的都是指针,指向的数据结构如下图所示:

很明显它们是用来创建不同类型的socket接口的,且是一种分层次的创建过程,可想而知,顶层socket_create()完成一些共有的操作,如分配内存等,然后调用下一层create;协议域内的create()完成一些该协议域内共有的初始化工作;最后具体协议中的create()完成协议特有的初始化。具体的下一节讲。

再来看上图右边的,也是顶层socket模块提供的4个函数,前两个一般由具体协议模块调用,由于协议栈与应用层的交互,具体的后面会讲到。后两个一般有协议域模块调用,用于底层设备与协议栈间的交互。但这也不绝对,如在PPPOE协议中,这4个函数都由具体协议模块调用,这是因为PPPOX协议域内的共有部分不多,各个协议间几乎独立。这4个函数的功能及所用到的数据结构,在后面具体用到时会详细说明。

2.socket插口创建

首先来看一下最终创建好的socket插口由哪些部分组成,该结构是相当庞大的,这里只给出框架:

基本属性有state(listen、accept等),flags标志(blocked等),type类型,这里family和protocol都没有了,因为它们再创建时使用过了,已经被融入到socket结构中。

File指针指向一个file结构,在Linux中一个socket也被抽象为一个文件,所以在应用层一般通过标准的文件操作来操作它。

Ops指向一个struct proto_ops结构,它是每种协议特有的,应用层的系统调用,最终映射到网络栈中具体协议的操作方法。

Sk指向一个struct sock结构,而该结构在分配空间时,多分配了一点以作为该协议的私有部分,这里包含了该协议的具体信息,内容相当多。首先是一个struct sock_common结构,包含了协议的基本信息;然后是一个sk_prot_create指针,指向一个struct proto结构体,该结构体就是第一节中所述的,用proto_regsiter()注册到内核中的,它包含应用层到协议栈的交互操作和信息(也可以说成是Appà transport layer的交互信息);然后还有一个sk_backlog_rcv函数指针,所指函数在协议栈处理完接收到的包之后调用,一般仅是把数据包放到该socket的接收队列中,等待APP读取;最后协议的私有部分里存放该协议的私有信息,如pppoe的sessionID、daddr,tcp的连接4元组等,这些信息很重要,利用它们来区分同一个协议中的多个socket。

附上出处链接:

4、linux程序包里的TCPIP协议栈哪里找

网络层,传输层,套接字的代码在/net目录下,数据链路层和驱动程序在/driver/net目录下。

5、Linux网络协议栈7--ipsec收发包流程

流程路径:ip_rcv() -- ip_rcv_finish() -- ip_local_deliver() -- ip_local_deliver_finish()

解封侧一定是ip报文的目的端,ip_rcv_finish中查到的路由肯定是本机路由(RTCF_LOCAL),调用 ip_local_deliver 处理。

下面是贴的网上的一张图片。

ip_local_deliver_finish中 根据上次协议类型,调用对应的处理函数。inet_protos 中挂载了各类协议的操作集,对于AH或者ESP来说,是xfrm4_rcv,对于ipsec nat-t情况下,是udp协议的处理函数udp_rcv,内部才是封装的ipsec报文(AH或者ESP)。

xfrm4_rcv -- xfrm4_rcv_spi -- xfrm4_rcv_encap -- xfrm_input

最终调用 xfrm_input 做收包解封装流程。

1、创建SKB的安全路径;

2、解析报文,获取daddr、spi,加上协议类型(esp、ah等),就可以查询到SA了,这些是SA的key,下面列出了一组linux ipsec的state(sa)和policy,方便一眼就能看到关键信息;

3、调用SA对应协议类型的input函数,解包,并返回更上层的协议类型,type可为esp,ah,ipcomp等。对应的处理函数esp_input、ah_input等;

4、解码完成后,再根据ipsec的模式做解封处理,常用的有隧道模式和传输模式。对应xfrm4_mode_tunnel_input 和 xfrm4_transport_inout,处理都比较简单,隧道模式去掉外层头,传输模式只是设置一些skb的数据。

5、协议类型可以多层封装,如ESP+AH,所以需要再次解析内存协议,如果还是AH、ESP、COMP,则解析新的spi,返回2,查询新的SA处理报文。

6、经过上面流程处理,漏出了用户数据报文(IP报文),根据ipsec模式:

流程路径如下图,这里以转发流程为例,本机发送的包主要流程类似。

转发流程:

ip_forward 函数中调用xfrm4_route_forward,这个函数:

1、解析用户报文,查找对应的Ipsec policy(__xfrm_policy_lookup);

2、再根据policy的模版tmpl查找对应最优的SA(xfrm_tmpl_resolve),模版的内容以及和SA的对应关系见上面贴出的ip xfrm命令显示;

3、最后根据SA生成安全路由,挂载再skb的dst上; 一条用户流可以声明多个安全策略(policy),所以会对应多个SA,每个SA处理会生成一个安全路由项struct dst_entry结构(xfrm_resolve_and_create_bundle),这些安全路由项通过 child 指针链接为一个链表,其成员 output挂载了不同安全协议的处理函数,这样就可以对数据包进行连续的处理,比如先压缩,再ESP封装,再AH封装。

安全路由链的最后一个路由项一定是普通IP路由项,因为最终报文都得走普通路由转发出去,如果是隧道模式,在tunnel output封装完完成ip头后还会再查一次路由挂载到安全路由链的最后一个。

注: SA安全联盟是IPsec的基础,也是IPsec的本质。 SA是通信对等体间对某些要素的约定,例如使用哪种协议、协议的操作模式、加密算法、特定流中保护数据的共享密钥以及SA的生存周期等。

然后,经过FORWARD点后,调用ip_forward_finish()--dst_output,最终调用skb_dst(skb)-output(skb),此时挂载的xfrm4_output

本机发送流程简单记录一下,和转发流程殊途同归:

查询安全路由: ip_queue_xmit -- ip_route_output_flow -- __xfrm_lookup

封装发送: ip_queue_xmit -- ip_local_out -- dst_output -- xfrm4_output

注:

1). 无论转发还是本地发送,在查询安全路由之前都会查一次普通路由,如果查不到,报文丢弃,但这条路由不一定需要指向真实的下一跳的出接口,只要能匹配到报文DIP即可,如配置一跳其它接口的defualt。

2). strongswan是一款用的比较多的ipsec开源软件,协商完成后可以看到其创建了220 table,经常有人问里面的路由有啥用、为什么有时有有时无。这里做个测试记录: 1、220中貌似只有在tunnel模式且感兴趣流是本机发起(本机配置感兴趣流IP地址)的时候才会配置感兴趣流相关的路由,路由指定了source;2、不配置也没有关系,如1)中所说,只要存在感兴趣流的路由即可,只不过ping的时候需要指定source,否者可能匹配不到感兴趣流。所以感觉220这个表一是为了保证

ipsec封装发送流程:

xfrm4_output--xfrm4_output_finish--xfrm_output--xfrm_output2--xfrm_output_resume--xfrm_output_one

xfrm4_output 函数先过POSTROUTING点,在封装之前可以先做SNAT。后面则调用xfrm_output_resume--xfrm_output_one 做IPSEC封装最终走普通路由走IP发送。

贴一些网上的几张数据结构图

1、安全路由

2、策略相关协议处理结构

3、状态相关协议处理结构

linux协议栈哪个文件的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于linux wifi协议栈、linux协议栈哪个文件的信息别忘了在本站进行查找喔。

文章版权声明:除非注明,否则均为我爱教程术原创文章,转载或复制请以超链接形式并注明出处。